Benha University
Faculty of Engineering Shoubra

Electrical Circuits (2)
Electrical Eng. Dept. $1^{\text {st }}$ year communication 2016/2017

Sheet (3)... Series Resonance

1. A series RLC network has $R=2 k \Omega, L=40 \mathrm{mH}$, and $C=1 \mu F$. Calculate the impedance at resonance and at one-fourth, one-half, twice, and four times the resonant frequency.
(Ans. $2 \mathrm{~K}, \underline{2-j 0.75 \mathrm{~K} \Omega}, \underline{2-j 0.3 \mathrm{~K} \Omega}, \underline{2+j 0.3 \mathrm{~K} \Omega}, \underline{2+j 0.75 \mathrm{~K} \Omega}$).
2. A coil with resistance 3Ω and inductance 100 mH is connected in series with a capacitor of 50 pF , a resistor of 6Ω and a signal generator that gives 110 V rms at all frequencies. Calculate wo, Q , and B at resonance of the resultant series RLC circuit.
(Ans. $\underline{447.21 \mathrm{krad} / \mathrm{s}, ~ 4969, ~ \underline{90 \mathrm{rad} / \mathrm{s}} \text {). } ~}$
3. Design a series RLC circuit with $B=20 \mathrm{rad} / \mathrm{s}$ and $\omega_{0}=1000 \mathrm{rad} / \mathrm{s}$. Find the circuit's Q.
(Ans. $=\underline{Q}=50$, assume $\underline{R=10 \Omega}$, so $\underline{L=0.5 H}, C=\underline{2 \mu F}$).
4. Consider the circuit of Figure 1
a. Determine the values of R and C such that the circuit has a resonant frequency of 25 kHz and an rms current of 25 mA at resonance.
b. Calculate the power dissipated by the circuit at resonance.
c. Determine the phasor voltages, V_{c}, V_{L}, and V_{R} at resonance.

Figure (1)
(Ans. $a-\underline{R}=25 \Omega, \underline{C=4.05 n F} / / / b-\underline{P}=15.6 \mathrm{~mW} / / / c-\underline{V}_{c}=39.3 \angle-90$, $\left.\underline{V}_{L}=39.3 \angle 90, ~ \underline{V}_{R}=0.625 \angle 0\right)$

Benha University
Faculty of Engineering Shoubra

Electrical Circuits (2)
Electrical Eng. Dept. $1^{\text {st }}$ year communication 2016/2017
5. Refer to the circuit of Figure 2.
a. Determine the resonant frequency expressed as ω ($\mathrm{rad} / \mathrm{s}$) and $f(H z)$.
b. Calculate the total impedance, Z_{T}, at resonance.
c. Solve for current I at resonance.
d. Solve for V_{R}, V_{L}, and V_{c} at resonance.
e. Calculate the power dissipated by the circuit and evaluate the reactive powers, Q_{c} and Q_{L}.
f. Find the quality factor, Q_{s}, of the circuit.

Figure (2)
(Ans. $a-\underline{w}_{s}=500 \mathrm{Krad} / \mathrm{s}, \mathrm{fs}=79.6 \mathrm{KHz} / / / \mathrm{b}-\mathrm{Z} t=200 \angle 0 \mathrm{l} / / \mathrm{C}$ $I=10 \mathrm{~mA} \angle 0 / / / \mathrm{d}-\mathrm{V}_{\underline{R}}=0.01 \angle 0, \underline{V}_{\underline{L}}=50.01 \angle 88.85, \quad \underline{V}_{C}=50 \angle-90 / / /$ e$\underline{\mathrm{Pt}=20 \mathrm{~mW}} / / / \mathrm{f}-\mathrm{Qs}=25)$.
6. Refer to the circuit of Figure 3.
a. Find $\omega_{s}, ~ Q$, and BW (in radians per second).
b. Calculate the maximum power dissipated by the circuit.
c. From the results obtained in (a) solve for the approximate halfpower frequencies, $\omega 1$ and $\omega 2$.
d. Calculate the actual half-power frequencies, $w 1$ and $\omega 2$, using the component values and the appropriate equations.

Figure (3)
(Ans. $a-\underline{\omega}_{s}=3727 \mathrm{rad} / \mathrm{s}, ~ Q=7.45, B W=500 \mathrm{rad} / \mathrm{s} \quad / / / \mathrm{b}-\mathrm{Pmax}=144 \mathrm{~W}$ $/ / / \mathrm{C}-\mathrm{w} 1=3477 \mathrm{rad} / \mathrm{s}, \mathrm{w} 2=3977 \mathrm{rad} / \mathrm{s} / / / \mathrm{d}-\mathrm{w} 1=3485.2 \mathrm{rad} / \mathrm{s}$. w2=3985 rad $/ \mathrm{s}$)

