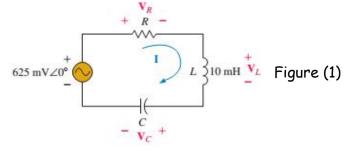


Benha University Faculty of Engineering Shoubra Electrical Eng. Dept. 1st year communication 2016/2017

Sheet (3)... Series Resonance

1. A series RLC network has R=2k Ω , L=40 mH, and C=1 μ F. Calculate the impedance at resonance and at one-fourth, one-half, twice, and four times the resonant frequency.

(Ans. 2K, $2-j0.75K\Omega$, $2-j0.3K\Omega$, $2+j0.3K\Omega$, $2+j0.75K\Omega$).


2. A coil with resistance 3Ω and inductance 100 mH is connected in series with a capacitor of 50 pF, a resistor of 6Ω and a signal generator that gives 110 V rms at all frequencies. Calculate wo, Q, and B at resonance of the resultant series RLC circuit.

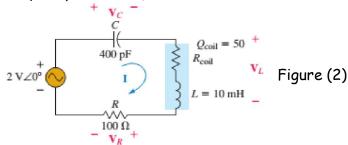
(Ans. 447.21 krad/s , 4969 , 90 rad/s).

3. Design a series RLC circuit with B=20 rad/s and ω_0 =1000 rad/s. Find the circuit's Q.

(Ans. = \underline{Q} =50, assume \underline{R} =10 Ω , so \underline{L} = 0.5H, C= $\underline{2}\mu$ \underline{F}).

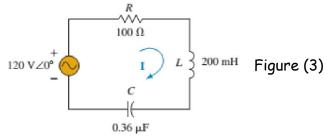
- 4. Consider the circuit of Figure 1
 - a. Determine the values of R and C such that the circuit has a resonant frequency of 25 kHz and an rms current of 25 mA at resonance.
 - b. Calculate the power dissipated by the circuit at resonance.
 - c. Determine the phasor voltages, $V_{\mathcal{C}}$, V_{L} , and V_{R} at resonance.

(Ans. a- $R=25\Omega$, C=4.05nF /// b- P=15.6mW /// c- $V_c=39.3\angle-90$, $V_L=39.3\angle90$, $V_R=0.625\angle0$)


Benha University Faculty of Engineering Shoubra

Electrical Circuits (2)

Electrical Eng. Dept. 1st year communication 2016/2017



- 5. Refer to the circuit of Figure 2.
 - a. Determine the resonant frequency expressed as w (rad/s) and f(Hz).
 - b. Calculate the total impedance, Z_T , at resonance.
 - c. Solve for current I at resonance.
 - d. Solve for V_R , V_L , and V_C at resonance.
 - e. Calculate the power dissipated by the circuit and evaluate the reactive powers, Q_{c} and Q_{L} .
 - f. Find the quality factor, Qs, of the circuit.

(Ans. a- \underline{w}_S =500Krad/s, \underline{f}_S =79.6KHz /// b- \underline{Z}_T =200 \underline{C}_T 0 /// \underline{C}_T =10mA \underline{C}_T 0 /// \underline{C}_T 0 // \underline{C}

- 6. Refer to the circuit of Figure 3.
 - a. Find w_s , Q, and BW (in radians per second).
 - b. Calculate the maximum power dissipated by the circuit.
 - c. From the results obtained in (a) solve for the approximate half-power frequencies, $\omega 1$ and $\omega 2$.
 - d. Calculate the actual half-power frequencies, $\omega 1$ and $\omega 2$, using the component values and the appropriate equations.

(Ans. a- $\underline{w_s}$ =3727rad/s, Q=7.45, BW=500rad/s /// b- \underline{Pmax} =144W /// \underline{C} - $\underline{w1}$ =3477rad/s , $\underline{w2}$ =3985rad/s)